精選 Microsoft Office 課程

Certificate in Python Programming & AI - Level 2

課程編號: PYAI4002

Certificate in Python Programming & AI - Level 2 商務課程簡介

Python 是一種易於學習的程式語言,由於其簡潔的語法和易於理解的程式碼,即使是初學者也能輕鬆上手。其次,Python 具有廣泛的應用領域,包括數據分析、人工智能、網絡開發等。因此,學習 Python 可以為未來的職業生涯打下堅實的基礎。此外,Python 還有豐富的開源庫和工具,可以幫助開發人員更加高效地開發應用程序。概況而論,學習 Python 是一個有價值的投資,不僅可以提高自己的技能水平,還可以開啟更廣闊的職業發展道路。  

課程目標:

學習 Python 的目標是掌握其語法和基本概念,學習如何開發應用程序、進行數據分析、創建網站和自動化工作,并以此技能提升職業發展機會。

課程特色:適合高速及集中的你,快速學習全部技術,投入日常工作中提升效率  

課程時數: 2   每堂  小時

課程材料:筆記一份,練習檔案一份。

上課模式:一人一機,真人導師教授課程。

公司培訓:本課程適用於公司團體培訓, 詳情可與我們職員聯絡。

報名資格:課程適合任何人士報讀

報名方法:1)網上即時報名  2)  銀行入數報名

上課地點:銅鑼灣

      立即報名:按此報名

      證書認可 : 完成課程後可以申領證書一份。

      課程證書


      課程內容:

      1. Introduction to lists in Python
        • Introduction
        • Introducing lists
        • Exercise - Create and use Python lists
        • Work with numbers in lists
        • Manipulate list data
        • Exercise - Work with list data
        • Knowledge check
        • Summary

      2. Use 'while' and 'for' loops in Python
        • Introduction
        • About 'while' loops
        • Exercise - Create a 'while' loop
        • Use 'for' loops with lists
        • Exercise - Create a 'for' loop
        • Knowledge check
        • Summary

      3. Manage data with Python dictionaries
        • Introduction
        • Introducing Python dictionaries
        • Exercise - Create Python dictionaries
        • Dynamic programming with dictionaries
        • Exercise - Dynamic programming with dictionaries
        • Knowledge check
        • Summary

      4. Python functions
        • Introduction
        • Basics of Python functions
        • Use function arguments in Python
        • Exercise - Use functions in Python
        • Use keyword arguments in Python
        • Use variable arguments in Python
        • Exercise - Work with keyword arguments
        • Knowledge check
        • Summary

      5. Python error handling
        • Introduction
        • Use tracebacks to find errors
        • Handle exceptions
        • Exercise - Handle exceptions
        • Raise exceptions
        • Exercise - Work with exceptions
        • Knowledge check
        • Summary

      6. Get started with Jupyter notebooks for Python
        • Introduction
        • Set up your environment
        • Exercise - Create and run your notebook
        • Exercise - Use advanced commands
        • Knowledge check
        • Summary

      7. Find the best classification model with Automated Machine Learning
        • Introduction
        • Preprocess data and configure featurization
        • Run an Automated Machine Learning experiment
        • Evaluate and compare model
        • Exercise - Find the best classification model
        • Knowledge check
        • Summary

      8. Find the best classification model with Automated Machine Learning
        • Introduction
        • Preprocess data and configure featurization
        • Run an Automated Machine Learning experiment
        • Evaluate and compare models
        • Exercise - Find the best classification model
        • Knowledge check
        • Summary